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It has long been realized that kinetic processes involved in the sorption and desorp- 
tion of solute molecules are in a large part responsible for the smearing of solute zones. 
The processes that have been especially studied are those in which (I) single step 
sorption and desorption reactions are important, and (2) diffusion through the station- 
ary or mobile phases is rate controlling. Along with the rapid growth of experimental 
technique an estended theoretical treatment is needed which will deal in a general 
way with the comples kinetics which occur in most heterogeneous media such as 
found in chromatography. An attempt to establish the basis for such a theory is 
reported elsewhere 1. We will be concerned here with the discussion of kinetic schemes 
which more closely approsimate real chromatographic systems. Included are the 
effects of adsorption on heterogeneous surfaces, simultaneous partition and adsorp- 
tion, adsorption of large molecules, and chemical reactions not directly related to 
sorption. In some cases simple kinetics are assumed which, although more extensive 
than found in previous treatments, still are only approsimations to some of the very 
complex systems. Nonetheless this permits us to investigate the gross effects of 
certain kinds of kinetic processes, The complete theory is briefly outlined which 
permits the extension to other systems. The general method is applicable to nonlinear 
kinetics and diffusion-controlled processes, as will be shown. 

THEORY 

The theory1 which permits the evaluation of zone spreading with comples, underlying 
kinetics is based upon the assumption that the various kinetic steps are proceeding 
near equilibrium. With only a few exceptions the departure from equilibrium must 
remain small unless poor resolution is to be tolerated2. 

Each of the various kinetic steps in chromatography can be represented by 

where AJ and AI represent different states of the solute molecule (sorbed, desorbed, 
hydrogen-bonded etc.). The first order rates of transition between the states are shown 

l This work was supported by the Unitccl States Atomic Energy Commission under Contract 
NO. AT(I I-1)-7@. 
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as 1zjj and 1~jr. Let the concentration of i, referred to a unit volume of the overall 
column material, be cg, and the total concentration be c. The ratio Q/C is the mole 
fraction X$. Furthermore each state is characterized by a velocity, zig, relative to the 1, 

fixed phase. This, of course, is zero if the Gh state is a sorbed state. 
The rate of reaction of molecules in the i th state is obtained by summing over all 

reaction paths 

At equilibrium ~4 = o and each concentration is at its equilibrium value cs*. In an 
operating chromatogram the flow of liquid acts to maintain a slight departure from 
equilibrium. The departure term for the Oh species, ~5, is defined by 

f3 = 0” (I + EJ) (3) 

Substituting this into eqn. (2) and subtracting out the equilibrium terms, which add 
to zero, we have Y( = c IZj& Cj - CSfE1 2: kij (4) 

since at equilibrium forward and reverse rates are equal for each step 

we have 

Since the set of equations represented in (6) are linear equations, the E’S are 
easily solved for. In order to effect this solution we will assume, as previously stated, 
that the reactions are proceeding near equilibrium. This assumption is equivalent to 
saying either that cg approximately equals c$*, or that et ,< I. 

The left hand side of eqn. (6) can be approsimated in the following way. The 
mass balance equation for i is 

acr aCi a%$ 
y2 = at +-+vZ\z-Dts (7) 

9 

where Dg is the diffusion coefficient of i in the longitudinal direction measured by z. 
Since the system is close tp equilibrium, &,/a.~ and act/at can be replaced by a~*/& 
and &$*/at. Furthermore it can be shown that the last term is ordinarily negligiblel. 
Hence %lf &$” 

yi z at + W z (8) 

Since c$* is a definite fraction, X1+, of the total concentration c, and since 

(9) 

where Z is the average velocity of the solute zone, then to a good approsimation 

y i a In c 
- = (v.1 - 27) - 
a* a2 (10) n 

With this evaluation of Y~/cs*, the various equations shown in (6) become a set 
of linear algebraic equations in the various ~5’s. If there are ‘ti states; i = I, 2,. * '3h, 
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we use 92 - I of these equations along with the one equation stating that the total 
concentration adds to c. The final equations for the values of E are, then 

s Xi”&1 = 0 (11a) 

a In c 
(IIb) 

Once the values of E are known, the zone structure can be related to the a- 
dependent flus term. The flus of material through a unit cross section is given by 

ci = 7 W% (12) 

Combined with eqn. (3) and the definition of mole fraction, Xs* = ct*/c, we have 

q = c 2: x&& + c x xt*&(vz (13) 

The first summation is merely the average velocity, ;ti, of the solute zone. 

g = czi -j- c r, X$*&.lv( (14) 

The term cZC represents the flus due to the drift of material along with the solvent. 
The significance of the last term, c Z; Xg” B~ZJ~, becomes clear with a closer look 

at the e values. From eqns. (II) we see that each E is proportional to a In cl&. Since 
this occurs in each term in the summation it can be factored out and combined with 
the coefficient c to yield a coefficient a~/&. IIence the flus is proportional to ac/&z 
just as in diffusion processes. Thus it is possible to use an effective diffusion coefficient, 
DC, in describing the spreading of a zone2. 

Equating the last term in eqn. (14) to - DC&/&, we obtain 

(15) 

where the .sg values are to he obtained from eqns. (II). It must be remembered that 
molecular diffusion and “eddy” diffusion also contribute so that the overall coefficient, 
D, is the sum of the three. In those cases where it is advantageous to relate zone 
structure to the height equivalent to a theoretical plate, H, we use the equations 

H 
2D ZD, 

=- ancl 
iz 

NC = - 
77 

HETEROGENEOUS SORPTION 

The sorption media encountered in chromatography are rarely espected to be homo- 
geneous. The rates of sorption and desorption would ordinarily vary considerably 
from one place to another. The z-site problem in which two different sorption sites 
with different rate constants are assumed, has been introduced to allow for heteroge- 
neous effect&‘*. It is possible, however, using the theory just presented, to obtain 
DC for the general multi-site sorption problem. This problem allows for the kinetics 
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of sorption on any number of different kinds of sites. The kinetic steps may be written 
as follows : 

&=A2 

AleA 

AlsA4 (17) . . . 
AIS& 

In this kinetic scheme, A, represents a solute molecule in the desorbed state, and 

A,, A,, l l *An represent different sorption states of the molecule. There are zn - z 

different rate constants of the form izu. 
Eqns. (IIa) and (xrb) can be applied to evaluate the E’S. For the n - z equations 

of the form (IIb), it is convenient to choose those for which i = 2, 3, l l an. Each ~5 
equals zero for this range of 9s. The N simultaneous equations are 

g = RalEl- kal&z 

g = km1 - k3163 
. (18) 

g = k&l - l~nl% 
0 = Xl”&1 + x2*.92 + X3*&3’ ‘9 + xn*‘En 

where g has been substituted for - Zc a In cl&. Eqn. 15 tells us which of the E’S must 
be evaluated. Since V$ is in each term of the summation, and vg = o for all but i = I, 
it is only necessary to obtain Ed. Cramer’s rule can be applied to this problem, and 
yields the following ratio of determinants. 

6 - k21 0 0 *‘a 0 

&? 0 - k3l 0 0 
. . 
. . 

2 0 0 0 -?&I 

I 0 x2* x3* X4”‘. .-Xn” 
a=, , L (19) 

lC2l. - R21 0 0 . . . 0 

Iz31 0 - is31 0 0 
. . 
. . 

iz,l 0 0 0 - L 

x1* X2” x3* x4*. * ’ X,8* 

This can be reduced by the standard methods to yield 

(20) 

Substituting this back into eqn. (IS) we obtain 

which is the effective coefficient of diffusion due to the kinetics. This result will now 
be expressed in a form directly related to desorption kinetic measurements. 

A convenient parameter in the study of desorption kinetics is the average time 
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required for desorption, td. This, is equal to the mean sorption life time of a collection 
of molecules sorbed at equilibrium and which can be irreversibly desorbed, i.e., 
removed from further sorption after desorption. An expression for ta is 

s 
3 xt clt 

&= O 
I- R (22) 

where R is the fraction of molecules initially desorbed (in the mobile phase), and 1X* 
is the mole fraction in the 91 sorbed state at the time t. At t = o, 1x1 = Xg” for all i. 
Since the desorption is irreversible, each X$ follows the first order rate law 

X$ = Xc” e-$lt (23) 

Substituting this back into eqn. (22) and evaluating the integral, we obtain 

XP &= c- 
?$I’( 

I-R) (24) 

where all summations run from i = z to i = n. This in turn can be substituted into 
eqn. (zI), which yields 

DC = 3 (I -RR)& (25) 

An equivalent form is obtained when Xv is substituted for Z. The quantity v is the 
average stream velocity of the mobile phase while X is the ratio of zone to stream 
velocity. 

D, = RW (I - R) _Eol (W 

Eqns. (25) and (26) are interesting since the only kinetic quantity appearing is the 
mean desorption time, td. This result permits a more realistic interpretation of 
chromatographic experiments since it is no longer necessary to account for the entire 
kinetic effect by one or two hypothetical reactions. It would be desirable, however, 
to isolate the various rate contributions to Zd. This would probably require the 
combined data from several fields of study, including chromatography. It appears 
that chromatography might be useful in studying desorption phenomena as well 
as several other reaction rate processes in porous media. 

The above equations for DC are, of course, limited to kinetics near equilibrium. 
If any of the desorption steps are significantly slow, then the influence of that step 
cannot be included in eqns. (25) and (26). The procedure then is to account for all 
the steps possible by means of eqns. (25) or (26), and then include the effect of the 
nonequilibrium step or steps separately. This can be done if the nonequilibrium steps 
are sufficiently simple to apply the exact theories of chromatography. Some promise 
has been found by this method in interpreting double spots in paper chromatography6, 

CONSECUTIVE RE:ACTIONS 

A large number of kinetic processes in chromatography involve a series of consecutive 
reactions. The following kinetic scheme roughly approximates many of these processes 

(27)) 
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Let the flow velocities be ZIP, 21% and 2~~ respectively. Any one of these may again be 
zero if the state is a sorbed one. Eqns. (II~) and (rrb) can be applied to the above 
kinetics with the result 

g1 = - /212q + 1212&2 (2&L) 

g3 = k32.52 - k32E3 (2Qb) 

o= xl*El -1_ x2*&2 + X3fe3 (2SC) 

where 
(711 

a 111 c 
---ii)------, 

a In c 
g1 = 

az 
g3 = (v3 -fi) - ) etc. 

a: 

Applying Cramer’s rule we obtain e1 and e3 

(29) 

(30n) 

(sob) 

These can be substituted into eqn. (IS) for DC, First, however, we obtain the e2 term 
in the summation directly from eqn. (zSC). 

- xe*.Q = xi*s.r + x3*.53 (31) 

The result is a In c 
-DC = (7~~ - 01) Xl*el + (v2 - 213) rY3'~3 

& 
(32) 

Using eqns. (30) for e1 and c2, and an expression for the mean velocity 

i7 = xx*vr + Xefve f x3*2)3 (33) 

we obtain 
DC = 

Xl” (VI - iz)2 

h2 

+ x3* (v3 - xi)2 

k32 
(34) 

It will be noticed that in the special case where zll = ~1~ = o we have the z-site 
sorption problem with A, representing the mobile species. Under these circumstances 
eqn. (34) reduces to eqn. (21). 

Eqn. (34) may be used in describing reactions that occur in either the mobile 
or stationary phase independent of the phase transfer process. The additional reaction 
might be an association reaction with a species present in one of the phases. It is 
necessary that the reaction remains first order in the solute concentration, although 
the overall order of the reaction may be different. 

The occurrence of some adsorption in a process that is primarily partition has 
concerned workers in both gas and paper chromatography. This esample is a valid 
application of eqn, (34) as long as the isotherm remains linear. The use of a single 
reaction step to describe the partition-diffusion process must be considered as an 
approximation. Let A, be the mobile phase species, A, the absorbed, and A, the 
adsorbed species. The respective velocities are v1 = ZJ, 2~~ = ~1~ = o. Furthermore 

,- l 1 I 1 = X and X2* + X3* = I - A. With these values DO becomes 

D,! = 
R (1 - R)2 v2 

h2 
4 X3*R+J2 

1332 
(35) 
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The first term on the right is the one obtained when no adsorption is occurring. The 
second. term is the contribution of adsorption. It is seen that this increases with the 
amount, X3*, adsorbed at equilibrium, and furthermore is generally significant when 
the adsorption process is slow. As a rough rule for cases with intermediate X values, 
the contributions to D, will be in proportion to the time of reaction, or inversely 
proportional to the reaction rate constants. 

LARGE MOLECULES 

The sorption of large molecules is by itself a comples phenomenon. The sorption 
process consists of a series of steps in which one segment attaches itself to the sorbent 
followed by the sorption of additional segments. Since the general problem is exceed- 
ingly complex”, we will show the nature of a simple prototype involving bi-functional 
sorption. This is a case in which only two parts of a molecule are active in attaching 
to the surface (molecules such as dicarboxylic acids with two polar ends would have 
kinetics approaching that of the prototype). The following kinetic scheme describes 
the situation. 

The detached molecule A, becomes A, if it anchors by means of one of its active 
groups, and A4 if it anchors by means of the other. The two active groups are not 
necessarily the same. The molecule can then desorb back to A, or complete the sorption 
of the other active group to form the completely sorbed molecule A,. 

The methods used in previous sections can be applied to the present example 
to yield the following DC 

- n) (l*23/$4OXZ* + kzokaoX3” -t k4&zo&“) 

+ Ii! (h2 (1523 - 1343) X4” + k14 (k43 - k23) X2* - k12k40X3* - k14kzoX3*) 1 
kshd~4o f h4~~43~~20 

(37) 

where lz,, and k4,, have been substituted for (k,, + k23) and (1~~~ + k,,), respectively. 
Eqn. (37) simplifies considerably under certain limiting circumstances. Consider 

for example a molecule in which the intermediates A, and A, have a short lifetime. 
Such would occur especially when the activation energy for further sorption is small. 
Under these circumstances X2* and X,* become negligible compared to X3* while 
R,, > 12,, and kdO > Iz,,. Also X3* becomes equal to (I - R), When these assumptions 
are used in eqn. (37) we have 

D, = 
I? (I - Jq2 fJ2 

hafz + kuf4 

where f2 = k,,/kzo is the fraction of times that a molecule in the form A, proceeds 
to the completely sorbed state A,. A like interpretation holds for f4. 
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CHEMICAL CHANGES 

Chemical changes in a chromatographic column lead to a variety of phenomena 
depending upon the nature and rates of the reactions. If the rates of chemical change 
are slow, large nonequilibrium effects are observed. These effects include the 
formation of double and triple zones, and also tailingb. If the reactions proceed 
rapidly enough to effect a large number of chemical changes during the running 
time of the esperiment, the departure from equilibrium will be small, and the present 
procedure valid. In addition to predicting chromatographic performance from reaction 
kinetics, it is suggested that the inverse process of obtaining reaction rate data from 
chromatography might be fruitful. 

One type of chemical change can be given as follows 
. 

Al <---t A2 
chemical _______.____________-----._-------..----------.-----._ 

1 1 change (39). 

Ad +---t A3 

VI = v4 = 0 v2 = v3 = v 

where A, and A, are the sorbed species which can react to form one another. The 
mobile phase species are A, and A,. The horizontal arrows represent the phase 
changes and the vertical arrows represent chemical changes. This scheme would 
.apply to isomerization reactions (cis-tmrts, etc.) which occur in both the mobile and 
stationary phases. It would also be applicable to a solute that combines with and 
dissociates from some species at constant concentration within the column. 

The evaluation of DC for the above scheme involves detailed manipulations too 
long to reproduce here. The result is 

V2 I( 
I-R) 

---l*Jy2+h4 (k30 + k23) + Xl*/JI’3* (h/1 (k20 + 1232) - h2j~34) 

I + X2*J~4**klO (I$30 + 1323) + /-3*ry4* (ho (1220 + 1232) - h21~21) 

1 

D, = 
i- R [j~23/~34Xl*X2* -k kdzzoK,*X3* - k$&j~X~*X4* - k21k3sX3*X4”]’ 

h4/*21/~30 f h23k34klQ 
- (40) 

where, again, k,, = lz,, + k34, etc. This equation can be simplified by making the 
following approximations. We will assume that the phase change reactions are much 
more rapid than the chemical reactions, i.e., kx2, k,,, 1zd3, lz,, > k14, kdl, /?23, 1~32. 

With this approximation we obtain 

D, = 
2~2 (X1*X3* - X2*X4*)2 02x1*x2* @X3*X,+ 

kw=G” i- 1223x2* + WI* + X2”) (k12 + 1221) + (X3* + X4*) (1334 + 1~3) 
(41) 

The terms in this equation can be interpreted as follows. The second term is the con- 
tribution due to the phase change of the chemical species (A,, A,), and as such con- 
tains only k,, and k,,. The third term has an analogous meaning for (A3, A,). The 
first term accounts for the effects of chemical change. This term can alternately be 
derived by assuming that each of the two chemical species is moving with its own 
particular velocity characterized by its own R value (it must be assumed, also, that 
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the sorption or partitioning process is near equilibrium). This derivation proceeds 
from the fact that any two interconverting species moving at different velocities 
gives rise to a diffusion effect. In fact, the simplest kinetic picture of chromatography 
is based on this fact: the sorbed and desorbed molecules are moving at different 
downstream velocities, and are, of course, interconverting. 

Examination of the first term in eqn. (41) shows that a zero value is acquired 
when (X,*lX,* - X,*X,*) = o. This is found when the separate R values 
(X2* /(.X1* +. X2”) and X,*/(X,* + X,*)) are equal, or when the separation factor 
is unity. The importance of the chemical change term, then, depends on two factors; 
the difference in R values appearing in the numerator and the reaction rate constants 
appearing in the denominator. 

It is expected that gas chromatography (especially with capillary columns) 
will prove a useful medium to exhibit the chemical change term, even with fairly 
rapid reaction rates. This is a result of the small contribution of the second and third 
terms of eqn. (41) as illustrated by the fact that the order of 10~ theoretical plates 
can now be obtained on capillary columns. 

CONCLUSIONS 

While the above examples have been concerned primarily with rate processes involving 
discrete kinetic steps, the nonequilibrium method is also applicable to diffusion 
controlled processes. These processes lead to a nonequilibrium in the form of lateral 
concentration gradients. Since the departure from equilibrium is generally small, 
the same approximations can be used in the mass conservation equations. The rate 
of reaction, YZ, becomes the rate of accumulation due to the lateral diffusion. Both 
particle-wide (referring to the particles of the porous media) and tube-wide non- 
equilibrium can exist in a chromatographic column. An example of the latter is the 
concentration gradient existing laterally across a coiled column’. Particle-wide 
nonequilibrium will be the subject of a later communication. 

The nonequilibrium method can also be used in the description of nonlinear 
kinetics. While the rate equations (2) are nonlinear, the situation is still tractable as long 
as ~2 < I. With this condition applying, we can make approximations of the following 
kind 

@ = c1*‘2 (1 + =t> 
ctq = cL*c$” (I + E{ + q) 

(42) 

where terms the order of e2 have been discarded. When these expressions are sub- 
stituted back into the rate equations they are still linear in the E’S, 

The final results obtained for the various examples have been presented in terms 
of an effective diffusion coefficient, DC. This can be written in terms of plate height 
by eqn. (16). The concentration profiles observed in chromatography, which have not 
been derived here, are obtained by applying Fick’s laws of diffusion to the entering 
zone. The final profile differs with the nature of the original zone. Since the mathe- 
matics of diffusion is such a highly developed discipline, it is felt that concentration 
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profiles .can be effectively derived by its use rather than by means of a separate 
mathematical derivation using the plate-height concept. The use of diffusion in 
describing zone structure has been shown by GLUECICAUF~. One case of zone structure 
is found so universally that its relation to the present treatment should be mentioned. 
When the solute is started as a narrow zone and there are no outside gradients, 
diffusion leads to a “Gaussian” peak in which the root-mean-square deviation, o, 

-- 
is equal to 2/zDt. 

The methods used to derive DC in this paper are not limited to chromatography, 
but can be applied to a large class of differential migration problems in which rate 
processes are occurring. Electrophoresis and sedimentation are examples in which 
zone diffusion results from kinetics processe9. 

TABLE OF SYMBOLS 

chemical species of the W type 
total solute concentration, referred to unit volume of overall chromatogram 
concentration of species i 
equilibrium concentration of species i 
total diffusion coefficient in the direction of flow 
diffusion coefficient in flow direction due to nonequilibrium effects 
diffusion coefficient in flow direction of species i 
equilibrium departure term 

fz, f4 defined following eqn. (38) 
abbreviation for (vg - Z) ZJ In c/& 
total plate height 
plate height due to nonequilibrium effects 
rate constant for the As to A.j transistion 
the number of reacting species 
solute flux in flow direction 
equilibrium fraction of molecules in the mobile phase 
rate of accumulation of i due to the kinetic processes 
time 
mean desorption time of sorbed molecules 
mean velocity of solute zone 
velocity of species i in flow direction 
mole fraction of solute in the ith form 
equilibrium mole fraction of i 

Equations have been obtained which give the effective diffusion coefficient or plate 
height due to kinetic processes. It is assumed that the departure from equilibrium 
is.only slight corresponding to the situation usually found in chromatography. The 

SUMMARY 
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theory is applied to sorption on heterogeneous media, consecutive reactions, the 
chromatography of large molecules, and the occurrence of chemical change simulta- 
neous with chromatography. The extension of the theory to diffusion-controlled 
processes and nonlinear kinetics is discussed. The applicability to other differential 
migration methods is noted. 
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